# Travaux Dirigés n°1 – Transmission (avec corrections) RSX101 – Réseaux et Télécommunications



Exercice 1 : Représenter la séquence 01101001 selon le codage « Tout ou rien »

Exercice 2 : Représenter la séquence 10110011 selon le codage « Tout ou rien »

Exercice 3 : Représenter la séquence 11100010 selon le codage « Tout ou rien »

Exercice 4 : Représenter la séquence 01101001 selon le codage « bipolaire »

Exercice 5 : Représenter la séquence 10110011 selon le codage « bipolaire »

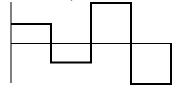
Exercice 6 : Représenter la séquence 11100010 selon le codage « bipolaire »

Exercice 7: Représenter la séquence 01101001 selon le codage « Miller »

Exercice 8 : Représenter la séquence 10110011 selon le codage « Miller »

Exercice 9 : Représenter la séquence 11100010 selon le codage « Miller »

#### Exercice 10:


Soit le signal capturé suivant (durée de capture : 1 seconde) :

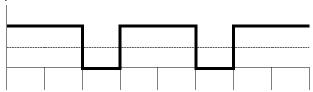


Indiquer le débit en bauds, la valence et le débit en bits/seconde de ce signal.

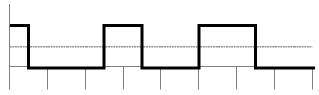
#### Exercice 11:

Même question pour ce signal (durée de capture : 2 secondes) :




Exercice 12 : Compléter le tableau suivant :

| Bauds | Valence | Bits/seconde |
|-------|---------|--------------|
| 100   | 2       |              |
| 100   |         | 200          |
| 10    |         | 100          |
| 10    | 32      |              |
| 100   |         | 1000         |


**Exercice 13**: Quel est le signal transmis par ce code « Tout ou rien »?



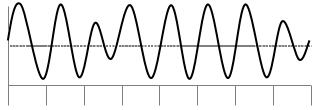
**Exercice 14** : Quelle est la séquence binaire correspondante au signal transmis avec le code « Non Retour à Zéro » ?



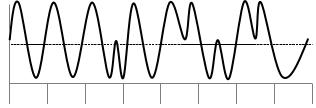
**Exercice 15**: Quelle est la séquence correspondante au signal transmis avec le code « Miller » ?



Exercice 16: Représenter la séquence 01101101 par un signal en modulation d'amplitude.


**Exercice 17** : Représenter la séquence 11011010 par un signal en modulation de fréquence.

**Exercice 18**: Représenter la séquence 11110000 par un signal en modulation de phase (180°).


**Exercice 19** : Quelle est la séquence correspondante au signal transmis en modulation de fréquence ?



**Exercice 20**: Quelle est la séquence correspondante au signal transmis en modulation de amplitude ?



**Exercice 21**: Quelle est la séquence correspondante au signal transmis en modulation de phase?

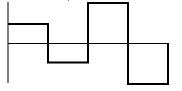




## Corrigés

#### Exercice 10:

Soit le signal capturé suivant (durée de capture : 1 seconde) :




#### Correction:

- Nous avons deux modulations dans la seconde, soit 2 bauds
- Nous pouvons distinguer deux états significatifs pour le signal électrique, soit une valence de 2 (signal bivalent).
- Soit, par la formule D (bits/s) = R (bauds) log2 V(valence), on obtient 2 bits/s.

#### Exercice 11:

Même question pour ce signal (durée de capture : 2 secondes) :



#### Correction:

- Nous avons deux modulations par seconde, soit 2 bauds
- Nous pouvons distinguer 4 états significatifs pour le signal électrique, soit une valence de 4 (signal tétravalent).
- Soit, par le formule D (bits/s) = R (bauds) log2 V(valence), on obtient 4 bits/s.

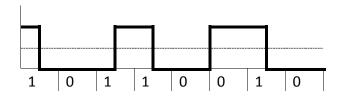
#### Exercice 12:

 $D(bits/s) = R(bauds) log_2 V(valence)$ 

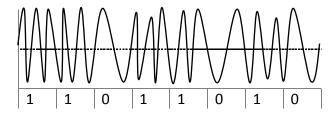
 $Log_2 2^n = n$ 

| Bauds | Valence                       | Bits/seconde                         |
|-------|-------------------------------|--------------------------------------|
| 100   | 2                             | = 100                                |
|       |                               | = 100 * log <sub>2</sub> 2 = 100 x 1 |
| 100   | = 4                           | 200                                  |
|       | $Log_2 V = 200 / 100$         |                                      |
|       | $Log_2 V = 2$                 |                                      |
|       | $V = 4 = 2^2$                 |                                      |
| 10    | Log <sub>2</sub> V = 100 / 10 | 100                                  |
|       | $Log_2 V = 10$                |                                      |
|       | $V = 2^{10} = 1024$           |                                      |
| 10    | 32                            | = 10 * log <sub>2</sub> 32           |
|       |                               | $= 10 * log_2 2^5$                   |
|       |                               | = 10 * 5 = 50                        |

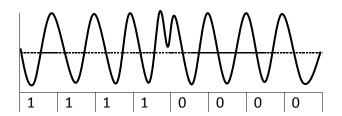
| 100 | Log <sub>2</sub> V = 100 / 10 | 1000 |
|-----|-------------------------------|------|
|     | $Log_2 V = 10$                |      |
|     | $V = 2^{10} = 1024$           |      |


### Exercice 13:

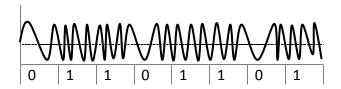
11010110


#### Exercice 14:

11011011

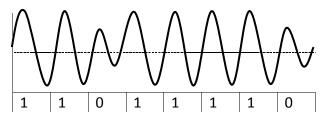

**Exercice 15**: Quelle est la séquence correspondante au signal transmis avec le code « Miller » ?




Exercice 17 : Représenter la séquence 11011010 par un signal en modulation de fréquence.

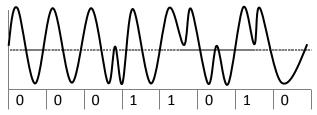


**Exercice 18**: Représenter la séquence 11110000 par un signal en modulation de phase (180°).




**Exercice 19** : Quelle est la séquence correspondante au signal transmis en modulation de fréquence ?




Exercice 20 : Quelle est la séquence correspondante au signal transmis en modulation de

fréquence?



Exercice 21 : Quelle est la séquence correspondante au signal transmis en modulation de

phase?

